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ABSTRACT
Line art colorization is a challenging problem. Techniques used for
photo colorization are typically not applicable since the input is
devoid of any texture. Furthermore, color assignment is usually
highly ambiguous due to the sparseness of the input. Recently, Gen-
erative Adversarial Nets (GANs) based methods have demonstrated
great success at image synthesis tasks. We build upon this work
and propose a novel network architecture and loss function that
both signi�cantly increase the realism of our results.

Speci�cally, we modify the standard U-Net architecture to in-
crease its performance for the task at hand. This involves introduc-
ing an extra downsampling level, dilated convolutions and replac-
ing batch normalization with instance normalization. That way,
our method is able to e�ciently process high-resolution imagery
with a su�ciently large receptive �eld. Next, we introduce a multi-
scale discriminator to e�ciently assess the realism of these high-
resolution images. Finally, we propose a novel loss based on total
variation regularization that substantially increases the quality of
the generated colorizations.

We evaluate our method and variants thereof on two datasets.
The �rst dataset consists of line art generated from comic albums
that were published in color. This allows us to compare the results
of our method to a ground truth. The second dataset consists of old
comic albums that were originally published in black-and-white.
Images from this dataset are more challenging due to the use of an
older drawing style and the presence of halftoning patterns. We
show that our method can produce and realistic and aesthetically
pleasing colorizations for both datasets.
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1 INTRODUCTION
Nowadays, most comics are known for their extensive use of color.
A few decades ago, however, color printing was still considered too
expensive. So, there is an enormous collection of older comics that
only appeared in black-and-white. Colorizing these older comics
breathes new life into them and makes them more attractive for
a wider audience. Unfortunately, doing this manually is a time-
consuming process.

Another scenario where colorization takes a lot of time and
e�ort is the creation of a new comic. Typically, a cartoonist starts
by drawing the line art of the comic. These black-and-white images
are then handed over to a colorist, who is responsible for adding

Figure 1: Our proposed method is able to colorize line art
from B&W albums (left) without any assistance from the
user.

color to them. This involves the colorist examining each image and
manually applying an appropriate color to each object.

In both cases, automating the colorization process would save
a signi�cant amount of time. Colorization, however, is a heavily
ill-posed problem. There are frequently multiple conceivable col-
ors that could be assigned to an object. This leads us to focus on
generating plausible colorizations that are convincing and aesthet-
ically pleasing for a human observer. Speci�cally, we tackle the
problem of automatically generating a plausible colorization of a
given binary comic book image.

2 RELATEDWORK
The problem of fully automatically colorizing comic book images
has not yet been widely studied. Prior work on comic colorization
typically requires the user to provides color hints in the form of
so-called scribbles [9, 17]. Since our goal is to develop a method
that does not require any user intervention, this work is of limited
relevance for us. Instead, we identify two di�erent problems that
share some important characteristics with our problem. This allows
us to determine some approaches that are also relevant to the task
at hand.

2.1 Photo Colorization
Photo colorization deals with the problem of hallucinating a plausi-
ble color version of a grayscale photograph. Just like in our prob-
lem, the input doesn’t necessarily contain enough information to



recover the ground truth color. Therefore, rather than reproduc-
ing the ground truth, the goal is once again to generate plausible
colorizations that can fool human observers.

Modern approaches for this problem successfully leverage large-
scale data and convolutional neural networks (CNN) [10, 16, 28].
Recent research has indicated that these networks rely primarily
on texture instead of shape [4]. This makes sense since the texture
information in the grayscale channel is a big aid for object recogni-
tion. In our case, however, the input is a line drawing and is thus
devoid of any texture. As a result, architectures that are e�ective
for photo colorization don’t necessarily perform well on our task.

Due to the multi-modal nature of the problem, optimizing the
aforementioned networks using the traditional Euclidean distance
yields unsatisfactory results. If an object can take on multiple dis-
tinct colors, the optimal solution according to the L2-loss will be the
mean of these colors. This results in grayish, desaturated coloriza-
tions. Consequently, Zhang et al. [28] propose to treat the problem
as multinomial classi�cation. While this indeed results in more
vivid colorizations, the output also exhibits frequent splotches as
the mode of the predicted distribution changes.

2.2 Image-to-image Translation
The goal of image-to-image translation is to translate an input
image from one domain to another domain given input-output
pairs as training data. This de�nition encloses a wide variety of
tasks that have traditionally been tackled with separate, special-
purpose machinery [2, 8, 26, 28]. Example applications include
noise removal, super-resolution and image synthesis. Since L1 loss
typically leads to blurry images for many of these tasks [12, 14],
the adversarial loss has become a popular choice [6] .

Recently, Isola et al. proposed the pix2pix framework [12], which
employs image-conditional GANs for a variety of applications.
These GANs learn a loss that penalizes unnatural results, while
simultaneously training a generative model to minimize this loss.
Because the learned loss automatically adapts to the data, it can
be applied to a multitude of tasks that traditionally required very
di�erent kinds of loss functions.

Speci�cally, the architecture consists of two networks: a gen-
erator G and a discriminator D. For our task, the objective of the
generator G is to translate a line drawing to realistic color image,
while the discriminator D aims to distinguish between real and
fake images. By pitting these two networks against each other,
the generator gradually learns to produce colorizations that are
indistinguishable from real ones.

3 APPROACH
Since deep learning is the approach that leads to the best results
on related problems, we also opt to use a convolutional neural net-
work. In what follows, we discuss the key features of our network
architecture and the loss formulation.

3.1 Network Architecture
A straightforward idea might be to train a less powerful network
to generate color hints. Afterward, these hints could be used to
color connected components, which are groups of white pixels
enclosed within a connected region of black pixels. More closely

examining human colorizations, however, reveals that the use of one
color per connected component is a crude approximation. In reality,
comic images frequently contain multiple colors per connected
component.

As such, we opt to utilize a fully convolutional network (FCN)
[21] as an end-to-end solution. That way, the network can be applied
to a line drawing of any size and maps it to a colorized version with
the same resolution. The network thus needs to combine high-level
semantics (to recognize objects) with low-level details (to color
inside the lines). A popular architecture that provides this ability
is the U-Net [19]. The use of skip connections in this architecture
allows the upsampling path to exploit contextual information and
location information from the downsampling path.

The standard U-Net architecture has a receptive �eld of 140 x 140
pixels [23]. Since objects in our input images are frequently larger
than that size, an increase in contextual information is required.
An e�cient way to exponentially increase the receptive �eld is
the use of dilated convolutions [27]. Speci�cally, we introduce an
additional downsampling step and introduce dilated convolutions
in the two lowest levels of the network. These changes allow us to
increase the receptive �eld to 795 x 795 with only a modest increase
in computational cost [3].

Another improvement we make is introducing normalization
layers throughout the network. A recent recommendation is to
use batch normalization to improve the speed, performance and
stability of neural networks [11]. The e�ectiveness of batch normal-
ization, however, is strongly dependent on the batch size. Since our
input and output have a high resolution, the maximal batch size is
limited by the available GPU memory. For this reason, we opt to
use instance normalization [22]. This allows us to retain some of
the bene�ts of batch normalization while being independent of the
batch size [25].

3.2 Loss Formulation
As previously remarked, constructing an e�ective loss function is
challenging due to the multi-modal nature of the problem. Tradi-
tional losses, such as the L2-loss, lead to desaturated colorizations
with annoying artifacts. This is caused by these losses only caring
about the distance to the ground truth, and not about the realism or
plausibility of the results. Since the goal here is to generate coloriza-
tions that are convincing for a human, we base our loss function
on the adversarial one used in the pix2pix framework [12]. The
discriminator can handle the multi-modality of the problem and
penalizes deviations that expose our colorization as fakes.

Early experiments revealed that the use of a discriminator sig-
ni�cantly boosts the realism of the colorizations. Nevertheless, the
results still contain some mistakes that are insu�ciently penal-
ized by the discriminator. As such, we introduce another term in
the loss function that penalizes these mistakes. This term is based
on total variation regularization and is subsequently named total
variation loss. The �nal loss function then consists of three terms:
L1-loss, discriminator loss and total variation loss. In what follows,
we examine each of these terms in detail.

3.2.1 L1-loss. While only using L1-loss does not necessarily result
in realistic colorizations, it is nevertheless a useful loss function.
For a lot of objects, such as skin, sky or trees, the colorization is



Figure 2: Schematic overview of training ourmethod. The ground truth images are converted to line art and fed to the network
as input. The network weights are then optimized based on a loss function consisting of three terms: L1-loss, discriminator
loss and total variation loss.

unambiguous and using this loss is a good approximation. Fur-
thermore, adding an L1 term makes sure that the output respects
the input. This can be seen by noting that this loss penalizes the
distance between ground truth outputs, which correctly match the
input, and synthesized outputs, which may not. We calculate all
distances in the CIELAB color space since distances in this space
model perceptual distance.

3.2.2 Discriminator loss. Exclusively using L1-loss results in rea-
sonable colorizations for a lot of characters and objects. Neverthe-
less, the colorizations frequently contain imperfections that expose
them as fake. The three most prominent mistakes are splotches,
unwanted color transitions and desaturated colors.

While these mistakes are conspicuous to human observers, it
is hard to construct a loss function that penalizes them. Based on
this observation, we introduce a discriminator in our architecture.
The task of this discriminator is then to make our colorizations
indistinguishable from human colorizations.

Since our output has a high resolution, the receptive �eld of
the discriminator has to be su�ciently large to evaluate it. A dis-
criminator with such a large receptive �eld, however, is prone to
over�tting and has a large memory footprint. To address the issue,
we use a multi-scale discriminator, as proposed by Wang et al. [24].
We use 3 discriminator networks that have an identical architecture
but operate at di�erent image scales. Speci�cally, the output of
the network is downsampled to scales 1

2 ,
1
4 and 1

8 before being fed
to the respective discriminator. This allows the discriminator at
the �nest scale to penalize splotches and other artifacts, while the
coarsest discriminator enforces global consistency.

The architecture of each individual discriminator network is an
unconditional PatchGAN, a FCN that classi�es 70 x 70 patches as
real or fake [12, 21]. The task of the colorization network is then

no longer just to be near the ground truth, but also to fool the
discriminators by producing natural colorizations.

3.2.3 Total variation loss. While introducing a discriminator re-
duces the number of artifacts, we still frequently observe unwanted
color transitions. Since the discriminator doesn’t seem to rectify
these as much as other mistakes, we introduce a loss term that pe-
nalizes such transitions and thus improves the realism of our results.
This term is based on total variation regularization, a process that
is traditionally employed for noise removal. The key observation
is that noise leads to a high total variation, i.e., the integral of the
absolute gradient of the signal is high. Adapted to our problem,
color transitions similarly lead to a high total variation of the output
image.

Directly applying this idea to our case, however, leads to the
gradient being dominated by the transitions between colored ar-
eas and black lines. To avoid this, we mask the matrix of gradient
magnitudes with a dilated version of the input line art. Afterward,
we apply the hyperbolic tangent function to the resulting matrix
before summing it. This procedure leads to an estimate of the sever-
ity of color transitions in the output. By adding this term to the
loss function, we discourage the network from introducing color
changes within a surface without robbing it of the ability to do so
if needed.

The �nal loss function is a weighted sum of the three terms de�ned
above. Since each of these terms is made up of di�erentiable func-
tions, we are able to apply backpropagation to optimize the weights
of the network. The �nal architecture is depicted in �gure 2.



4 DATASET
A crucial aspect of every machine learning pipeline is the dataset.
By carefully choosing a dataset, we can get more insight into the
performance of our method. In what follows, we elaborate on the
choice and processing of our dataset.

4.1 Comic Series
Our method can be applied to any comic, as long as a su�ciently
large set of colorized training samples is available. We opt to train
and test our method on Jommeke, a popular Belgian comic series.
A primary reason for choosing this series is that the �rst 91 of
the over 290 comics were published in black-and-white. With the
introduction of album #92, the series switched to publications in
colors. This allows us to test our method on original black-and-
white comics. In total, our dataset consists of 2818 scans of black-
and-white pages and 9329 scans of color pages.

4.2 Conversion of Color Comics to Line Art
An important remark is that the dataset contains each album either
in black-and-white or in color. We thus don’t possess the pairs
of black-and-white images with corresponding colorized versions
that are required for training the network. We can, however, take
advantage of the fact that converting color images to black-and-
white images is typically much easier than the other direction.

We thus automatically generate a binary line drawing for each
color image, to use as the input of our network. In this line drawing,
every black pixel should correspond to a black line or surface in
the original image. Since our datasets consist of scans, however,
the pixels that we want to keep in the line art are not necessarily
perfectly black in the scanned color image. Because the actual colors
are perturbed by various independent sources of noise, we de�ne a
multivariate normal distribution over the CIELAB color space. This
distribution expresses the probability that a pixel with a speci�c
color belongs to a black line or surface. We then use this distribution
and a chosen threshold to determine which pixels to color black in
the line art.

The ideal threshold, however, varies from image to image and
is hard to determine without human intervention. Rather than
manually determining an appropriate threshold for each image, we
randomly pick one from an interval containing the most common
thresholds. Thus, each time we feed an image to the network during
training, we uniformly sample this interval and generate a line
drawing based on the chosen threshold. This results in the network
seeing each ground truth color imagewith a variety of line drawings,
varying in the used threshold, as input. This procedure can also
be seen as a kind of data augmentation. Sometimes the threshold
will be too high, resulting in extraneous black pixels in the input
(see �gure 3d). Other times, the threshold will be too low, resulting
in the disappearance of some line segments (see �gure 3c). This
diversity makes the network robust to noisy input images.

4.3 Conversion of Old B&W Comics
In the previous section, we proposed a process for converting color
images to line art. This allows us to generate the pairs of line art
and color image that are needed to train the network. After training,
we can use the network to colorize the line art drawn during the

(a) Original color image (b) Line drawing generated with
medium threshold

(c) Line drawing generated with low
threshold

(d) Line drawing generated with high
threshold

Figure 3: In�uence of the used threshold on the generated
line drawings

production process of a comic. Another major use case is the col-
orization of old black-and-white comics. As discussed in section 4.1,
we also have 2818 scans of black-and-white pages available. These
scans, however, are not binary images, as our network expects as
input. Rather, they are color scans of yellowed black-and-white
pages with specks of dust. This is problematic since an important
assumption in supervised learning is that the train and test set are
both sampled from the same underlying distribution [5]. We now
discuss exactly how these scans di�er from the images our network
is trained on and how we tackle these di�erences.

4.3.1 Hal�oning removal. To convert these scans to binary images,
that can be fed to our network, we start by applying the same
procedure as above with a di�erent threshold range. The result
of applying this procedure to the image in �gure 4a, is shown in
�gure 4b. We observe that the black lines and surfaces are correctly
transferred to the binary image. A complication, however, is the
presence of halftoning dots in the source image, and thus also in
the resulting binary image. In particular, these black-and-white
albums use one level of halftoning to add some depth to the scene.
The usage of this pattern is purely an artistic choice and doesn’t
necessarily convey any information about the actual color of an
object. Its presence, however, does interfere with the operation of
our network as the network is not used to this kind of pattern.

The process of reconstructing a continuous-tone images from a
halftone version, is called inverse halftoning or descreening [13, 15].
A straightforward way to do so is the application of a low-pass �lter,
such as a Gaussian �lter. A problem with this approach is that it
blurs the image and thus also throws away relevant details around
the edges. For our purposes, however, the halftoning patterns don’t



(a) Halftoning in a scan of a black-and-
white comic

(b) Halftoning after conversion to a bi-
nary image

(c) Binary image with small connected
components indicated in red. Notice
how this are primarily halftoning dots,
but also a piece of the hand.

(d) Binary image after removal of small
connected components

Figure 4: Example of the removal of halftoning patterns

contain useful information, so we can focus solely on removing
them instead of converting them to a continuous tone.

To remove these patterns, we make use of connected-component
labeling, which groups black pixels in the binary image in groups
of adjacent pixels [7]. After grouping the black pixels by connected
component, we mark the components that consist of less than 7
pixels, as shown in red on �gure 4c. These small connected com-
ponents are mainly halftoning dots. By removing them, we obtain
an image without halftoning dots, as shown in �gure 4d. This is,
however, only an approximation so some artifacts remain around
the edges and useful lines are sometimes discarded as well. Nev-
ertheless, the process works well in general and can remove most
halftoning dots from the binary image.

4.3.2 Drawing Style. A second important di�erence between the
black-and-white albums and the color albums is the used drawing
style. As mentioned in section 4.1, the black-and-white albums
were all published before the color albums that our network was
trained on. Throughout the years, however, the drawing style has
evolved and is now very distinct from the style used in earlier
albums. This di�erence is illustrated in �gure 5. The line art on
the left is generated from the �rst edition of the �rst album in the
series, which appeared in black-and-white. The line art on the right
is generated from a recently revised version of that �rst album. This
di�erence is problematic since a lot of the features that distinguish
characters in later albums are missing in earlier albums.

Resolving these discrepancies between older and more recent
comics turns out to be challenging. The aforementioned album
is the only one of which we have a version in both the old and
new drawing style. These two versions, however, not only di�er in
drawing style but also frequently in content. This makes it hard to
train a mapping from the old to the new drawing style. Luckily, the
drawing style of these old albums converges rather quickly to the
recent one. At the 15th album (out of 91 black-and-white albums),
the drawing style is already quite close to the contemporary style

(a) Line art from black-and-
white album #1

(b) Line art from a recently re-
drawn version of album #1

Figure 5: Example demonstrating the di�erence in drawing
style between older and more recent albums.

for most characters. From that point on, we can rely on the network
robustness to variations in the drawn lines.

To improve the performance on earlier albums, we could use
domain adaptation [1] or manually colorize some older comics as
extra training data. The �rst option, however, introduces a signif-
icant amount of extra complexity, while the second option is not
in keeping with our method being fully automatic. We thus don’t
elaborate on these techniques and accept that the performance is
degraded on the earliest albums.

5 RESULTS
Evaluating the quality of the generated colorizations is an open
and di�cult problem [20]. Traditional metrics, such as the mean
absolute error (MAE) or peak signal-to-noise ratio (PSNR), measure
the distance to the ground truth rather than the realism of the
results. For this reason, we set up a human perceptual study that
allows us to evaluate how plausible our colorizations look to human
observers. In the following section, we discuss the design and results
of this study.

5.1 Variants
As previously discussed, our �nal loss function consists of three
terms. To evaluate the impact of each of these terms on the realism
of the results, we train three variants of the networks. For each of
these variants, the network architecture and training procedure
are identical, except for omitting certain terms in the loss function.
Speci�cally, we train the following variants:
• L1-loss
• L1-loss + discriminator loss
• L1-loss + discriminator loss + total variation loss

The last of these variants is our full method. Besides training
three variants, we also evaluate the performance on two datasets:
color comics and black-and-white comics. The �rst dataset consists
of line art that is generated from a set of color albums. This dataset
thus has the same characteristics as the data our network trained
on and allows comparison of the results to a ground truth. The
second dataset consists of line art that is generated from a set of
older black-and-white albums. This dataset is harder due to the
aforementioned issues with the drawing style. Furthermore, there
is no ground truth available for these albums.



5.2 Human Perceptual Study
The primary goal of our method is to produce colorizations that
look natural to human observers. We thus follow the procedure
outlined by Iizuka et al. and base our study around the question
“Does this image look natural to you?” [10]. Speci�cally, we set up an
experiment where 84 human observers are each shown 90 random
color panels of which they have to determine if they look real or
fake. These color images are randomly chosen from sets of colorized
images for each of the three variants or from a set of ground truth
images. As explained in the previous section, we also split based
on whether the input was line art generated from a color album or
from a black-and-white album. After viewing each panel, the user
has to indicate whether the panel looks real or fake.

During these tests, wewant to prevent participants from focusing
too much on details they normally wouldn’t pay attention to. To
do this, we give participants instructions to treat the images like
they would do when reading an ordinary comic and use to their
gut feeling in case of doubt. Moreover, we also arti�cially limit the
time that each image is shown. Previous experiments indicated that
readers take roughly two and a half seconds per panel to read and
inspect it. We thus show each panel for three seconds, after which
the participant has unlimited time to indicate whether it looks real
or not.

5.3 Analysis
The percentage of panels deemed real per network variant and per
dataset is shown in table 1. We start by noting that participants
labeled 92.6 % of the ground truth images as real. This demonstrates
that participants are competent at the task but critical in case of
doubt.

Next, we look at the results of colorizations based on line art
from color albums (the column color album). Our full method can
fool participants on 65.2 % of the panels. This is a substantial im-
provement over the 53.0 % when training the network using only
L1-loss. A remarkable result is that the performance of the vari-
ant L1 + discriminator is lower than the variant trained without
a discriminator. We’re able to explain this phenomenon by more
closely examining the resulting colorizations. While the discrimi-
nator leads to more vivid colors, it also leads to the introduction of
checkerboard artifacts in the output [18]. The most e�ective way to
�x these artifacts is to change the kernel size of the convolutions in
the discriminator to be a multiple of the stride. Since these artifacts,
however, are not present in our full method and we only modify
the loss function for each variant, we don’t do that here.

Finally, we inspect the results when applying our method to
albums that originally appeared in black-and-white. The perfor-
mance of our full method on this set is, with 45.9 %, signi�cantly
lower than when applied to line art generated from color albums.
We didn’t test the other variants of the network on this dataset
since we expect the reductions in performance to be comparable
to those determined above. Analyzing the least convincing images
shows us that the major hurdles are indeed the aforementioned
halftoning and drawing style. First, the halftoning removal is fre-
quently imperfect, with the remaining dots leading to grayish and
noisy colorizations. Manually removing these remaining dots typi-
cally results in a dramatic increase in performance. Secondly, the

Variant Color album B&W album

L1 53.0 % -

L1 + discriminator 45.6 % -

L1 + discriminator + TV 65.2 % 45.9 %

Ground truth 92.6 % N/A

Table 1: Percentage van de prenten dat als echt werd beo-
ordeeld per variant en verzameling.

network is not always able to recognize characters when they are
drawn in a more primitive style in the earlier albums.

5.4 Examples
We show colorization results on the set color comics (�gure 6) and
B&W comics (�gure 7). These images were chosen to demonstrate
the ability of our method to colorize a wide variety of comic book
panels. Note that all these results were generated automatically
without any human intervention.

6 CONCLUSION
In this paper, we have presented an end-to-end trainable approach
for automatic colorization of line art. We extended the pix2pix
framework with a more capable U-Net and loss function that is
custom-tailored for comic colorization. We then ran a perceptual
study to evaluate the performance of our model on two datasets.
This study indicates that our novel loss signi�cantly improves the
realism of our results. We’ve also shown that our method can be
used to revive degraded line art of older black-and-white comics.
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